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Abstract
The Gaussian Penner matrix model is re-examined in the light of the
results which have been found in double-well matrix models. The orthogonal
polynomials for the Gaussian Penner model are shown to be the generalized
Laguerre polynomials L(α)

n (x) with α and x depending on N, the size of
the matrix. An asymptotic formula for the orthogonal polynomials is derived
following closely the orthogonal polynomial method of Deo (1997 Nucl. Phys.
B 504 609). The universality found in the double-well matrix model is extended
to include non-polynomial potentials. An asymptotic formula is also found for
the Laguerre polynomial using the saddle-point method by rescaling α and x
with N. Combining these results a novel asymptotic formula is found for the
generalized Laguerre polynomials (different from that given in Szego’s book) in
a different asymptotic regime. This may have applications in mathematical and
physical problems in the future. The density–density correlators are derived
and are the same as those found for the double-well matrix models. These
correlators in the smoothed large N limit are sensitive to odd and even N where
N is the size of the matrix. These results for the two-point density–density
correlation function may be useful in finding eigenvalue effects in experiments
in mesoscopic systems or small metallic grains. There may be applications to
string theory as well as the tunnelling of an eigenvalue from one valley to the
other being an important quantity there.

PACS numbers: 02.70.Ns, 61.20.Lc, 61.43.Fs

1. Introduction

In this work we revisit the generalized Penner model [1] and its associated Laguerre
polynomials. The Gaussian Penner model is a double-well matrix model with an infinite
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thin barrier at the origin, hence its eigenvalue spectrum has a gap at the origin. Here a novel
asymptotic formula for the orthogonal polynomials (generalized Laguerre polynomials) of
the Gaussian Penner model is found. This allows the basic kernel of the model, using the
Christoffel–Darboux formula, to be derived exactly. Once the kernel is known the density,
density–density correlators and higher order correlators, which are the observables of the
model, can be determined. See [2] for the results found for a general double-well matrix
model. The work of [6] which involved the loop equation method and [2–4] which used the
orthogonal polynomial method, a variation of the loop equation method and the method due
to Shohat, gave different results for the smoothed long range density–density correlators. This
was clarified in [5] where it has been argued that the difference is due to not taking into account
the discreteness of the spectrum. Taking into account the discreteness leads to an extra term
which is beyond the mean field result [6]. Combining these gives rise to the result of [2–4]. In
the mathematics literature there have also been studies of the double-well matrix model [7].
The interest from mathematicians has been primarily because these models fall into the class
of oscillatory Riemann–Hilbert problems as the recurrence coefficients of these models are
highly oscillatory. In the case of the double-well matrix models the problem can be exactly
analytically solved.

The Penner matrix model was also studied in the context of the moduli space of a punctured
surface [8]. There an equality between the Penner matrix model and the Euler characteristic of
moduli space of punctured surfaces was computed, before taking the continuum limit. Later in
[9] it was shown that even after taking the continuum limit the Euler characteristic of moduli
space of unpunctured surfaces was obtained as the free energy of the Penner model. This
was done in an effort to understand two-dimensional gravity coupled to matter at the critical
point c = 1. In [1] the Gaussian Penner model and its multicritical behaviour was studied.
Here the study has been extended to derive the correlators of the Gaussian Penner model for
large N. The density–density correlators of this model correspond to the probability of finding
an eigenvalue given the probability of finding the first eigenvalue. The results obtained here
for the long range density–density correlator [2] will give information about the tunnelling
of eigenvalues from one valley to the other. In a recent advance [10] it was shown that the
properties of string theory may be found by calculating single electron tunnelling in multi-cut
matrix models. The work in this paper may have some bearing on the work in [10].

Applications of this study may also be to disordered mesoscopic systems where
generalized Laguerre polynomials arise, for example, in disordered models of metal–insulator
transitions [11, 12] and superconducting–normal interface with Andreev reflection (the
opening of a gap) [13]. In models of structural glasses [14] which map onto a variant of
the Gaussian Penner matrix model these results may be of particular interest. In another
direction there has been recent work on the generalized Laguerre ensemble in the context of
the chiral random matrix models of QCD (see [15, 16] and references therein) and in describing
a novel group structure associated with scattering in disordered mesoscopic wires [12]. The
results obtained here may be relevant for such studies in the future. The Penner model results
found here are also interesting in their own right.

This study focuses on the Gaussian Penner model [1] with potential V (M) = 1
2µM2 −

t
2 ln M2 where M is an N × N random matrix; after some work on gapped matrix models has
been reported and clarified [2–5]. In recent work two basic ideas have been implemented. First
the idea of symmetry breaking (see [14, 17]) and then an asymptotic formula of the orthogonal
polynomials [2, 7]. Here for the Gaussian Penner model the corresponding polynomials are
the associate Laguerre polynomials, Lα

N(x), where the α, x and N asymptotes are to be taken,
in previous work only the x,N asymptotes were found. It turns out that it is in this asymptotic
region that the singular models make contact with the double-well random matrix models and
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Figure 1. The potential for the Gaussian Penner random matrix model with V (λ) = 1
2 µλ2 −

t
2 ln λ2, µ = 1 and t = 1.

the universality of the gapped matrix model is extended to include non-polynomial potentials.
The density–density correlators are the same as those found for the double-well matrix models.
Ideas of symmetry breaking are also true for the Gaussian Penner model [14, 17] but because
of the infinite thin barrier at the origin, and symmetry breaking involves one electron quantum
tunnelling, it is harder to give an intuitive picture. These ideas will be elaborated on in future
papers.

The paper is divided as follows. It starts by describing completely the model and
establishing the notation and conventions. In section 3, the asymptotic formula is derived
using saddle point and orthogonal polynomial techniques. This corresponds to the asymptotic
formula discussed in [2, 3]. The orthogonal polynomial for the Gaussian Penner model
is proportional to the generalized Laguerre polynomials, hence a new asymptotic formula is
found for these polynomials. In section 4, the old asymptotic formula of Szego for the associate
Laguerre polynomials is taken and shown not to correspond to the asymptotic formula found
above. Section 5 ends with conclusions and open questions.

2. The model, notation and conventions

We consider models of the type (see [1] for details of notation and definitions)

Z = exp(−F) =
∫

dM e−N Tr V (M) (2.1)

where V (M) = V0(M) − t
2 ln M2 and V0(M) = 1

2µM2 (see figure 1).
In general the orthogonal polynomials are Pn(λ) = λn + l.o. where λ are the eigenvalues

of M and the orthogonality conditions are
∫ ∞
−∞ dλ e−NV (λ)Pn(λ)Pm(λ) = hnδnm. The partition

function can be expressed in terms of the hn as Z = N!h0h1h2 · · ·hN−1.
For the large N limit, the density of eigenvalues, ρ(z) ≡ (

1
N

)∑N
i=1 δ(z − λi), can be

found by solving either a saddle-point equation or the Schwinger–Dyson equation. In terms
of the generating function F(z) = 1

N

[
Tr 1

z−M

] → ∫
dz′ ρ(z′)

z−z′ the Schwinger–Dyson equation
reads F(z)2 − V ′(z)F (z) = M(z), where M(z) is a meromorphic function. The density of
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Figure 2. The density of eigenvalues for the Gaussian Penner random matrix model for µ = 1
and t = 1.

eigenvalues is given by ρ(z) = − 1
π

Im F(z). The generating function F(z) in the large N
limit for t > 0 is

F(z) = µz

2
− t

2z
− µ

2z

√
(z2 − a2)(z2 − b2) (2.2)

where a2 = (2+t)

µ
+ 2

µ

√
(1 + t) and b2 = (2+t)

µ
− 2

µ

√
(1 + t). See figure 2 for the corresponding

density of eigenvalues.

3. Exact solution for the orthogonal polynomial of the symmetric Gaussian Penner
matrix model

The orthogonal polynomials satisfy the recurrence relation

(z − Sn)Pn(z) = Pn+1(z) + RnPn−1(z) (3.1)

where Sn,Rn are the recurrence coefficients. For symmetric models Sn = 0. For even
potentials instead of the recurrence relation

zPn(z) = Pn+1(z) + RnPn−1(z) (3.2)

one can use

z2P2n(z) = P2n+2(z) + (R2n+1 + R2n)P2n(z) + R2n−1R2nP2n−2(z) (3.3)

and

z2P2n+1(z) = P2n+3(z) + (R2n+1 + R2n+2)P2n+1(z) + R2n+1R2nP2n−1(z) (3.4)

where we have multiplied z to equation (3.2) and expanded. Then equation (3.3) contains
only even polynomials P2n(−z) = P2n(z) and equation (3.4) contains only odd polynomials
P2n+1(−z) = −P2n+1(z). This simplifies the solution as we will see.

(1) Let us first work with the even set. Let y = z2 and define functions Pn(y) = P2n(z). In
terms of these ‘new’ polynomials

yPn(y) = Pn+1(y) + SnPn(y) + RnPn−1(y) (3.5)
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where Sn = R2n + R2n+1 = An + Bn and Rn = R2n−1R2n = AnBn−1. These polynomials obey∫ ∞

0
dy e−N ′[V0(y)−t ′logy]Pn(y)Pm(y) = hnδn,m (3.6)

where V0(y) = 2V0(z) = µy + · · · , t ′ = t − 1
2N ′ and N ′ = N

2 .
This is the same as the brick-wall problem, i.e. the linear Penner model if t ↔ t ′, N ↔ N ′

and t ′N ′ = (
t − 1

N

)
N
2 = (Nt−1)

2 .

(2) A similar analysis can be carried out for the odd set. Define

P̄n(y) = z−1P2n+1(z). (3.7)

Then

yP̄n(y) = P̄n+1(y) + S̄nP̄n(y) + R̄nP̄n−1(y) (3.8)

where

S̄n = R2n+1 + R2n+2 (3.9)

and

R̄n = R2n+1R2n. (3.10)

Because of the extra factor of z associated with the odd series the ‘barred’ polynomials
satisfy the orthogonality condition∫ ∞

0
dy e−N ′[V0(y)−t̄ ′logy]P̄n(y)P̄m(y) = h̄nδn,m (3.11)

where t̄ ′ = t + 1
2N ′ . This barred system can be solved as a brick-wall problem. The original

recurrence coefficients are obtained by

R2n+1 = 1
2

{
Sn +

√
S2

n − 4R̄n

}
(3.12)

R2n = 1
2

{
Sn −

√
S2

n − 4R̄n

}
. (3.13)

Using Wn+1 + Wn + SnYn = 2n+1+Nt
N

and SnWn+1 − Wn − 1
N

= −Rn+1Yn+1 + RnYn−1

(see [1] for details and definitions of W and Y) we get

Sn = 2n + 1 + t ′N ′

µN ′ = 4n + 1 + tN

µN
(3.14)

S̄n = 2n + 1 + t̄ ′N ′

µN ′ = 4n + 3 + tN

µN
(3.15)

Rn = n(n + t ′N ′)
µ2N ′2 = 2n(2n − 1 + tN)

µ2N2
(3.16)

R̄n = n(n + t̄ ′N ′)
µ2N ′2 = 2n(2n + 1 + tN)

µ2N2
. (3.17)

(1) For the even set the orthogonality relation∫ ∞

0
dy e−N ′[V0(y)−t ′ log y]Pn(y)Pm(y) = hnδn,m (3.18)
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simplifies to ∫ ∞

0
dy e−N ′V0(y)yN ′t ′Pn(y)Pm(y) = hnδn,m. (3.19)

Now as Rn = n(n+t ′N ′)
µ2N ′2 = 2n(2n−1+tN)

µ2N 2 and Rn = hn

hn−1
, hn is hn = Rnhn−1 =

RnRn−1Rn−2 . . .R1h0 = n!
(µN ′)2n

�(n+t ′N ′+1)

�(t ′N ′+1)
h0. The integral for h0 can be solved simply

by noting that Pn(y) = P2n(z) for n = 0,Pn(y) = P0(z) = 1, then h0 =∫ ∞
0 dy e−N ′V0(y)yN ′t ′P0(y)P0(y) = ∫ ∞

0 dy e−N ′V0(y)yN ′t ′ . For V0(y) = µy and substituting

u = N ′µy we get h0 = ∫ ∞
0

du
N ′µ e−u

(
u

N ′µ

)N ′t ′ = 1
(N ′µ)N

′ t ′+1 �(N ′t ′ + 1). Thus hn = n!�(n+1+t ′N ′)
(µN ′)2n+N ′ t ′+1 .

Rewriting Pn(y) = Qn(u) the orthogonality condition is
∫ ∞

0 duuN ′t ′ e−uQn(u)Qm(u) =
(N ′µ)N

′t ′+1hnδn,m = (n!)2�(n+1+t ′N ′)
(µN ′)2n�(n+1)

δn,m. Redefine Q′
n(u) = (µN ′)n

n! Qn(u) the above integral is∫ ∞

0
duuN ′t ′ e−uQ′

n(u)Q′
n(u) = �(n + 1 + t ′N ′)

�(n + 1)
δn,m (3.20)

which on comparing with the corresponding integral for the associate Laguerre
polynomials L(α)

n (x) gives Q′
n(u) = (−1)nLN ′t ′

n (u), then (α = N ′t ′ associate
Laguerre polynomials) Pn(y) = Qn(u) = n!

(µN ′)n (−1)nLN ′t ′
n (u) and P̂n(y) = Pn(y)√

hn
=√

(µN ′)N ′ t ′+1

(n!)�(n+1+t ′N ′) (n!)(−1)nLN ′t ′
n (N ′µy).

Thus the normalized even set of orthogonal polynomials is

ψ2n(y) = e− N ′
2 [µy−t ′ log y]P̂n(y)

=
[

n!(N ′µ)N
′t ′+1

�(n + 1 + N ′t ′)

] 1
2

y
N ′ t ′

2 e
−N ′µy

2 LN ′t ′
n (N ′µy). (3.21)

(2) For the odd set∫ ∞

0
dy e−N ′[µy−t̄ ′ log y]P̄n(y)P̄m(y) = h̄nδnm (3.22)

where t̄ ′ = t + 1
2N ′ and N ′ t̄ ′ = Nt+1

2 . The orthogonality condition is∫ ∞

0
dy e−N ′µyyN ′ t̄ ′ P̄n(y)P̄m(y) = h̄nδnm. (3.23)

Note that R̄n = h̄n

h̄n−1
, for R̄n = n(n+t̄ ′)

µ2N ′2 we get h̄n = R̄nh̄n−1 = R̄nR̄n−1R̄n−2 . . . R̄1h̄0 =
n!(n+t̄ ′N ′)!

(µN ′)2n(t̄ ′N ′)! h̄0. Further P̄n(y) = z−1P2n+1(z) and P̄0(y) = z−1P1(z) with P1(z) = z, P̄0(y) =
z−1z = 1. Therefore, the integral for h̄0 is h̄0 = ∫ ∞

0 dy e−N ′µyyN ′ t̄ ′ P̄0(y)P̄0(y) = ∫ ∞
0 dy

e−N ′µyyN ′ t̄ ′ . Defining u = N ′µy, we get h̄0 = ∫ ∞
0

du
N ′µ e−u

(
u

N ′µ

)N ′ t̄ ′ = 1
(N ′µ)N

′ t̄ ′+1

∫ ∞
0 du

e−uuN ′ t̄ ′ so that h̄n = �(n+1)�(n+1+t̄ ′N ′)
(N ′µ)2n+N ′ t̄ ′+1 .

Now let Q̄n(u) = P̄n(y). Therefore,
∫ ∞

0 du e−uuN ′ t̄ ′Q̄n(u)Q̄m(u) = (N ′µ)N
′ t̄ ′+1h̄nδnm =(

n!
(µN ′)n

)2 �(n+1+t̄ ′N ′)
n! δnm.

Define Q̄′
n(u) = (µN ′)n

n! Q̄n(u) then∫ ∞

0
du e−uuN ′ t̄ ′Q̄′

n(u)Q̄′
m(u) = �(n + 1 + t̄ ′N ′)

n!
δnm. (3.24)

Comparing with the associate Laguerre polynomials Q̄′
n(u) = (µN ′)n

n! Qn(u) =
(−1)nLN ′ t̄ ′

n (u) where α = N ′ t̄ ′. Now P̄n(y) = Q̄n(u) = n!(−1)n

(µN ′)n LN ′ t̄ ′
n (N ′µy) hence

ˆ̄Pn(y) = P̄n(y)√
h̄n

=
√

(µN ′)N ′ t̄ ′+1n!
�(n+1+t̄ ′N ′) (−1)nLN ′ t̄ ′

n (N ′µy).
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Thus the normalized odd orthogonal polynomials are

ψ2n+1(y) = e− N ′
2 [µy−t̄ ′ log y] ˆ̄Pn(y)

=
[

n!(N ′µ)N
′ t̄ ′+1

�(n + 1 + N ′ t̄ ′)

] 1
2

y
N ′ t̄ ′

2 e
−N ′µy

2 LN ′ t̄ ′
n (N ′µy). (3.25)

The important lesson to learn from this exercise is that α = (Nt−(−1)n
′
)

2 for n′ an integer
which is even or odd and x = N ′µy for the orthogonal polynomials of the Gaussian Penner
model (which are proportional to the generalized Laguerre polynomials L(α)

n (x)).

4. A new asymptotic formula for the generalized Laguerre polynomial

Let us start with an expression which has a well-defined α = 0 limit. Using
d

dx
f (x) = d

du
f (u + x)|u=0 (4.1)

we can write using Cauchy’s theorem

L(α)
n (x) = ex

n!
x−α

(
d

du

)n

[(x + u)n+α e−(x+u)]u=0

= x−α

n!

(
d

du

)n

[(x + u)(n+α) e−(u)]|u=0

= x−α

∫
c

dz

2iπ

1

zn+1
(z + x)n+α e−z (4.2)

in which the contour C is a small circle around the origin (|z| < x). Change z → nz
(|z| < x

n

)
then

L(α)
n (x) =

(x

n

)−α
∫

c

dz

2iπ

1

zn+1

(
z +

x

n

)n+α

e−nz

=
(x

n

)−α
∫

c

dz

2iπ

1

z
e−nf (z) (4.3)

f (z) = z + log z −
(

1 +
α

n

)
log

(
z +

x

n

)
. (4.4)

We explore α
n

and x
n

finite. In this representation the limit α = 0 is well defined. C is a circle
around the origin. The saddle point is given by an expression

z2 + z

(
x − α

n

)
+

x

n
= 0. (4.5)

With the parametrization

α − x

n
= 2

√
x

n
cos φ (4.6)

z0 =
√

x

n
eiφ (4.7)

and z̄0 are the saddle points. This is valid in the range
∣∣ α−x

n

∣∣ < 2
√

x
n

; if the parameters are
such that this inequality is reversed, there is only one real saddle point. This is where the new
saddle points will have to be taken into account.
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If there is a saddle point in the integral

I =
∫

c

dz

2iπ

1

z
e−nf (z) (4.8)

at z0 then

I ≈ e−nf (z0)

z0

√
2π

n|f ′′(z0)| e
−iθ

2 (4.9)

with f ′′(z0) = |f ′′(z0)| eiθ . Expand f (z) around z0

f (z) = f (z0) + 1
2 (z − z0)

2|f ′′(z0)| eiθ . (4.10)

The path is z − z0 = x e
−iθ

2 and

I ≈ e−i θ
2 −nf (z0)

∫ +∞

−∞
dx e− n

2 x2 |f ′′(z0)|. (4.11)

Here we need to add the contributions of z0, z̄0 and the other saddle points. Therefore, if
f (z0) = A + iB

I ≈ e−nA

√
2π

x|f ′′(z0)|2 cos

(
nB + φ +

θ

2

)
(x) (4.12)

with

f ′′(z0) =
√

n

x

2i sin φ e−iφ√
x
n

+ eiφ
(4.13)

and θ is its phase. The (−1)n would only show up in B. This is a new asymptotic expansion
of the generalized Laguerre ensemble in a novel asymptotic regime. It would be nice to have
a physical picture of this asymptotic regime.

We can also follow [2] and derive the asymptotic formula for the orthogonal polynomials
of the Gaussian Penner random matrix model. A brief derivation is given after the result is
stated. For N large but N − n ≈ O(1) and x lying in the two cuts the asymptotic formula for
the orthogonal polynomials of the Gaussian Penner matrix model can be approximated by

ψn(x) = 1√
f

[
cos(Nζ − (N − n)φ + χ + (−1)nη)(x) + O

(
1

N

)]
(4.14)

where f, ζ, φ, χ and η are functions of x and are given by

f (x) = π

2x

(b2 − a2)

2
sin 2φ(x)

ζ ′(x) = −πρ(x)

cos 2φ(x) = x2 − (a2+b2)

2
(b2−a2)

2

cos 2η(x) = b
cos φ(x)

x

sin 2η(x) = a
sin φ(x)

x

χ(x) = 1

2
φ(x) − π

4

(4.15)

with a2 and b2 as given in section 2 for the Gaussian Penner model.
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A brief derivation of this result is given here for completeness. Using ψn(λ) =
Pn(λ)√

hn
exp

(−N
2 Tr V (λ)

)
, equation (3.1) can be written as

λψn(λ) =
√

Rn+1ψn+1(λ) +
√

Rnψn−1(λ). (4.16)

Multiplying by λ and using equation (4.16) once again we get

λ2ψn(λ) =
√

Rn+1

√
Rn+2ψn+2(λ) + Rn+1ψn(λ) + Rnψn(λ) +

√
Rn

√
Rn−1ψn−2(λ). (4.17)

For potential V with two symmetric wells, it is known that Rn = An for n even and
Rn = Bn for n odd, where in the large N limit An and Bn are approximated by two continuous
functions A(x), B(x) with x = n

N
. On using the asymptotic formula (4.14) we get

λ2 − (A + B)

2
√

AB
= cos 2φ(λ). (4.18)

It is known that for Z2 symmetric two-cut models the endpoints a and b are related to A and
B by

A + B = a2 + b2

2
2
√

AB = b2 − a2

2
. (4.19)

Next consider the recurrence relations (n even)

λψn+1(λ) =
√

Rn+2ψn+2(λ) +
√

Rn+1ψn(λ)
(4.20)

λψn−1(λ) =
√

Rnψn(λ) +
√

Rn−1ψn−2(λ).

On substituting equation (4.14) for ψn,ψn±1, ψn±2 in equation (4.20) it is easy to see that

sin 2η(λ) = (−
√

A +
√

B)
sin φ(λ)

λ

= a
sin φ(λ)

λ

cos 2η(λ) = (
√

A +
√

B)
cos φ(λ)

λ

= b
cos φ(λ)

λ
.

(4.21)

These relations determine some of the equations in (4.15). The rest of the equations can
be determined by the orthogonality and expressions for the kernel following closely [2].

Recall that the normalized orthogonal polynomial for this model is ψ2n(y) =[
n!(N ′µ)N

′ t ′+1

�(n+1+N ′t ′)

] 1
2 y

N ′ t ′
2 e

−N ′µy

2 LN ′t ′
n (N ′µy) and ψ2n+1(y) = [

n!(N ′µ)N
′ t̄ ′+1

�(n+1+N ′ t̄ ′)

] 1
2 y

N ′ t̄ ′
2 e

−N ′µy

2 LN ′ t̄ ′
n (N ′µy).

Hence comparing with equation (4.14) we get a new asymptotic formula for the generalized
Laguerre polynomials.

All the corresponding correlation functions of this model will be as obtained in [2] and
[3]. Following [3] and using the contour of integration for the Gaussian Penner model, see
figure 3, the smoothed density–density correlation function can be derived in the
thermodynamic limit and is an oscillating function of N:

2π2N2ρc
2(λ, µ) = ελεµ

β
√|σ(λ)|√|σ(µ)|

1

(µ − λ)2
(λµ(λµ − a2 − b2)

+ a2b2 + (−1)Nab(µ − λ)2). (4.22)
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Figure 3. The contour of integration for the two-cut Gaussian Penner model.

Here for the symmetric Gaussian Penner model σ(z) = (z2 − a2)(z2 − b2), a2 =
(2+t)

µ
+ 2

µ

√
(1 + t), b2 = (2+t)

µ
− 2

µ

√
(1 + t), ελ = +1 for b < λ < a, ελ = −1 for −a < λ < −b

and β = 1, 2, 4 depending on whether the matrix M is real orthogonal, Hermitian or self-dual
quartonian.

The result for the long range density–density correlation function derived in [3] is for
eigenvalues which are not frozen in the two valleys. Using the orthogonal polynomial method
of [2] in section V of [3] the result (4.22) is derived; these are the smoothed density–density
correlators which correspond to frozen eigenvalues equally distributed in both wells. In [2]
the full kernel for the density–density correlator is presented with all the oscillations and
dependence on N. The result (4.22) has been obtained by several authors, in particular in
[4, 5] where the contradiction between the result in [6] and equation (4.22) was clarified as
being due to the discreteness of the eigenvalue spectrum.

As the density–density correlator contains information about the probability of finding an
eigenvalue given the probability of finding the first eigenvalue, it contains information about
tunnelling between the two valleys if the eigenvalues are in two different wells. Thus the result
(4.22) may be useful in the studies of [10] where the significance to string theory of tunnelling
from one well to the other in multi-cut matrix models is made.

There may be applications of these expressions for the density–density correlators in the
formulae for the mesoscopic fluctuation for situations where there is a gap in the spectrum.
The conductance fluctuation for such systems would then depend on N. These may be observed
in single electron experiments on mesoscopic samples which have gaps in their eigenvalue
spectrum. Work to explicitly obtain all these formulae in the Penner matrix model in this
asymptotic regime is in progress. Note that in [18] the application of the smoothed correlators
of the single-well matrix model [19] to conductance fluctuations of mesoscopic systems is
given.

5. The old asymptotic formula for the generalized Laguerre polynomials

Consider the asymptotic formula given in Szego’s book on orthogonal polynomials. The
formulae of Plancherel–Rotach type for Laguerre polynomials for α arbitrary and real, ε fixed
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positive number for x = (4n + 2α + 2) cos2 φ, ε � φ � π
2 − εn

−1
2 are given as

e
−x
2 L(α)

n (x) = (−1)n(π sin φ)
−1
2 x− α

2 − 1
4 n

α
2 − 1

4

×
{

cos

[(
n +

(α + 1)

2

)
(sin 2φ − 2φ) +

π

4

]
+ (nx)

−1
2 O(1)

}
. (5.1)

For the Gaussian Penner model α = (Nt−(−1)n
′
)

2 and x = N ′µy hence the above expression
is

e
−x
2 L(α)

n (x) = (−1)n(π sin φ)
−1
2 x

−α
2 − 1

4 n
α
2 − 1

4

{
cos

[(
n +

1

2

)
(sin 2φ − 2φ)

+
(Nt − (−1)n

′
)

4
(sin 2φ − 2φ) +

π

4

]
+ (nx)

−1
2 O(1)

}
. (5.2)

Simplifying we get

e
−x
2 L(α)

n (x) = (−1)n(π sin φ)
−1
2 x

−α
2 − 1

4 n
α
2 − 1

4

{
cos

[(
n +

1

2
+

Nt

4

)
(sin 2φ − 2φ)

+
π

4
− (−1)n

′

4
(sin 2φ − 2φ)

]
+ (nx)−

1
2 O(1)

}
. (5.3)

Note that the term (−1)n
′

4 (sin 2φ − 2φ) is not the extra term (with η see [2, 3, 7] or
equation (4.15)) that was found for the asymptotic formula in the double-well matrix problem.

6. Conclusion

Let us note that in matrix models when the number of connected components for the support of
the eigenvalues changes, one finds a new universality class for the correlators which has been
extended here to include the non-polynomial potentials. The orthogonal polynomial for the
Gaussian Penner model is derived explicitly and found to be proportional to the generalized

Laguerre polynomials Lα
n(x) with α = (Nt−(−1)n

′
)

2 and x = N ′µy where n′ stands for both
even 2n and odd 2n + 1. The asymptotic formula found for the orthogonal polynomials of
the double-well matrix models is extended to include the Gaussian Penner matrix models.
Comparing the above, a novel asymptotic formula for the generalized Laguerre polynomials
in a different asymptotic regime is found. As the generalized Laguerre polynomials appear in
many applications to mesoscopic systems some of which are mentioned in the introduction,
there may be many physical applications in the future. There may be applications to string
theory as well as the tunnelling of an eigenvalue from one valley to the other being an important
quantity. The density–density correlator presented here may be of relevance in that context.
Mathematically, this is also an interesting result as the generalized Penner model are singular
models. Moreover a new asymptotic formula for the generalized Laguerre polynomial has
been found. Further mathematical and physical relevance of these results will be reported
elsewhere.
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